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COMBINED BUOYANCY- AND PRESSURE-DRIVEN FLOW THROUGH A
HORIZONTAL VENT: THEORETICAL CONSIDERATIONS

by

Leonard Y. Cooper
Building and Fire Research Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

Flow through a horizontal vent is considered where the vent-connected spaces near the elevation of the

vent are filled with fluids of different density in an unstable configuration, with the density of the top space

larger than that of the bottom space. With zero-to-moderate cross-vent pressure difference the instability

leads to a bi-directional exchange flow between the two spaces. For relatively large cross-vent pressure

difference the flow through the vent is unidirectional, from the high- to the low-pressure space.

For arbitrary specified cross-vent pressure difference, boundary value problems for the flow are

formulated for cases where the fluid media in the two spaces are the same perfect gas, with relatively high

and low temperature (corresponding to low and high density) in the lower and upper spaces, respectively.

Two separate classes of problem are distinguished. In the first, the higher pressure is in the space above

the vent. This enhances the downward component of the flow from the top to the bottom space, and

diminishes, or reduces to zero, the upward flow. In the second, the higher pressure is in the lower space

leading to enhancement of the upward flow, etc. Relationships between the two boundary value problems

and their solutions are identified. These are useful for extending an available solution for one class of

problem to that of the other and for unified understanding and correlation of experimental data for the two

flow configurations.

Keywords: building fires; compartment fires; computer models fire models;mathematical models;

vents; zone models



INTRODUCTION

Consider the problem of flow through a horizontal vent where the vent-connected spaces near the

elevation of the vent are filled with fluids of different density, the density of the top space, pT0P ,
being

larger than that of the bottom space, p B0T .

Ptop Pbot — Ap > P —
(Ptop PbotV^ (1)

The configuration is unstable [1] in that it leads to a purely buoyancy-driven bi-directional exchange flow

across the vent, with the more dense material flowing through the vent from the top to the bottom space
and the less dense fluid from the bottom to the top space.

The above flow comes about when there is no cross-vent pressure difference. If there is a non-zero

pressure difference then the flow rates will be altered. The flow from the high pressure side of the vent

will increase and that from the low-pressure side will decrease. If the pressure difference is large enough
then the flow through the vent will become uni-directional. When this happens, the effect of the relative

buoyancy between the spaces will still have an effect on the flow rate. If the pressure difference is

increased further, then, eventually, the effect of bouyancy will not be important and the problem can be
understood simply by means of Bernouli-type momentum considerations.

Theoretical and experimental studies of the above effects are presented in references [2] -[9].

In its full generality, the above problem and its solution has a broad range of importance and applicability.

Of interest here are the aspects of the problem related to flow, in the presence of arbitrary cross-vent

pressure difference, between relatively cool and dense air in the top space and relatively high-temperature

and buoyant air in the bottom space. This is a general problem associated with ventilation of enclosed,

heated/cooled spaces. It is a problem of particular importance in the spread of smoke (i.e., fire-heated

and -contaminated air) during fires in multi-room facilities.

This paper considers the boundary value problems for the above flows. Two problems, identical in all

features except for which space has the higher of the two pressures (i.e., the top or bottom space) are

formulated. Relationships between the two problems and their solutions are then identified. These
relationships would be useful for extending an available solution for one class of problem to that of the

other and for unified understanding and correlation of experimental data for the two flow configurations.

THE TWO CONFIGURATIONS

Figure 1 depicts the general flow scenarios being considered. Figure la, is designated as Configuration

1 (including a co-ordinate sytem with X
3

in the upward direction, i.e., opposite to the direction of the

gravitational force) with associated Boundary Value Problem 1 (referred to below as Problem 1), Figure

1 b as Configuration 2 (X3 downward) with Boundary Value Problem 2 (Problem 2). At the elevation of the

vent opening, but far removed laterally, the pressures in the top and bottom space of Figure 1 a are pH ,GH
and pLOW ,

respectively, where

Phigh ' Plow = Ap > 0 (2)
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The pressures in the top and bottom space of Figure 1 b are pL0W and pHIGH ,
respectively. Note that pHIGH

and pLOW are identical for Problems 1 and 2, whereas p^p and pB0T are not. This fact becomes useful

in the problem formulations that follow.

As is always the case in practical problems of present concern it is assumed that

Ap/p < < 1
; p — (Phigh Plow)/2 (

3)

The fluids in the two spaces are assumed to be the same perfect gas. In the two figures the temperatures

at the vent elevation, but far removed laterally, are Ttop and Tbot. As would be determined from the

equation of state, these are the temperatures associated with pTOP and p B0T, respectively, and with the

appropriate pressure, pHIGH or pL0W . The constraint of Eq. (3) leads to

T"bot
'
"1"top

— ^T > 0; T — (Ttop + Tbot)/2 (
4)

Thus, the smaller of the two densities, p BOT ,
is associated with the higher temperature gas, Tbot ,

in the

bottom space, etc.

THE BOUNDARY VALUE PROBLEMS

The problems for the two configurations are formulated for a vent in the X3 = 0 plane. D is the

characteristic dimension of the closed curve which defines the shape of the vent opening. The depth of

the vent is L and it is assumed that the vent is shallow in the sense that UD < < 1 is negligible. For

problems of interest here, it is assumed that at and near X
3 = 0, but outside the the vent opening, heat

transfer to the X
3 = 0 surfaces, both in the top and bottom spaces, is negligible compared to, say, the

enthalpy of the gas flows converted through the vent.

Although the flows under consideration are expected to be strongly time-dependent, it is assumed that

time scales which characterize their fluctuations are relatively small, i.e., it is assumed that meaningful

average flow characteristics could be established, in principle, with integrals over time intervals which are

relatively small compared to the characteristic times of the problems of interest.

For the purpose of this paper the important features of the governing equations are highlighted by

describing the problems as steady-state boundary value problems rather than initial/boundary value

problems. Neglecting pdV work and viscous dissipation in the energy equation leads to Problems 1 and

2 for Configurations 1 and 2. These are presented in Table 1 [Eqs. (5)-(6)]*.

It is assumed that specific heat, C
p
= C (T), dynamic viscosity, p = /x(T), and thermal conductivity, k =

k(T) are all analytic functions of T near T = T and in a region of the real T axis in the entire range Ttop

*ln the tensor notation used here, for a term with an unrepeated subscript i or j, the i or
j
can take on any

value 1 , 2, or 3. A term with a repeated index i or j, indicates that the term is summed over the repeated

index from 1 to 3.
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For the purpose of establishing the relationship between p and T, p in Eq. (8) (Table 1) is approximated

as being uniform throughout the flow region.

pT — constant — p/R — p-top^"top
— P bot"^"bot (3)

where R is the gas constant and Ttop and Tbot are modified (from the values that would be determined

from the specified pT0P and p B0T and the equation of state) to satisfy Eq. (8'
)
exactly. This will be a good

approximation provided

Apg
|

X3 1 /p << 1 throughout the region of interest (10)

Introduce the following perturbation (•primed
1

)
variables and dimensionless Cstarred

1

)
variables:

Problem 1 Problem 2

p' = p - p\ T = T - T;

p' = p - p - pf^Xgi

p* = p/p = 1 + p
* (Apip)

T* = T/T = 1 - T* (AT/T)

F* (1) = f-
1)
/(2g) = (0, 0, -1/2)

p' = p - p; T = T - 1;

p' = p - p - pf<
2)X3 ;

p* = p/p = 1 - p* (Apip)

T* = T/T = 1 + T* (AT/T)

F*<
2) = fp>/(2g) = (0, 0, 1/2)

p' = p'/Ap; T* = T'/AT;

p* = p/(2gApD); p*' = p'/(2gApD);

U‘ = Uj[p/(2gDAp)]
1/2

; X* = X/D

(
11 )

Also, define

C; = C
p
(T)/C

p
(T); M‘ = p(T)/M (T); K* = k(J)/kCt) (12)

Now it can be shown from Eqs. (8' ) that

Apip = AT/t = e < 2 (
13

)

and that for the two problems
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Problem 1 Problem 2

p' = [T*V(1 -£T*')][1 + G(£)/(£T‘)];

p
*
= W(T* ; £); c; = c;(-£T*');

M* = Af (- £T*'); K* = K*(- £T*');

/' = [T‘7(1 + eT* )][1 - G(£)/(£T*')];

/ = W(T*';-£); C; = C;(£T*'); (14)

M‘ = M*(£T*'); K* = K‘(£T*');

where

W(x; a) = 1 + [ox/(1 - ox)][1 + G(a)/(ox)]

G(o) = G(- a) = 4/[2 + (1 - a/2)/(1 + a/2) + (1 + a/2)/(1 - a/2)] -

1

(15)

and where, in some region around x = 0

C'
p
(x) = 1 + E c

n
x"; c„ = {t

f,
/[n!C

p
(T)3>d

nC
p
(T)/dT

n
[

n = 1 T = T
00

M\x) = 1 + E m
n
x
n

;
m

n = {Tn/[n! /z(T)]}dVCT)/cfr
ri

|
(16)

n = 1 T = T
00

K*(x) = 1 + E H^x"; K,, = {T
n
/[n!k(T)]}d

n
kCT)/dT

n
|

n = 1 T = T

According to assumed analytic character of C, p., and k, C*(x), and K*(x) can be continued

analytically along the real x axis in the range - e/2 < x < e/2.

The boundary value problems in their dimensionless form are presented in Table 2 [Eqs. (17)-(20)] where

the Grashoff and Prandtl numbers introduced there are defined as

Gr = 2gD3
e/[^(t)/pl

2
; Pr = C

p
(T)^(T)/k(T) (21)

For specified values of £ , n, Gr, and Pr a solution to Problem 1 or 2 yields

U*
(N) = U*

(N)
(X‘; n, £, Gr, Pr);

p*'(N) = p*'(N)(x*
; n> £) Qr, Pr); (22)

t*'(n) = t*'(n
)(x*

: n, £, Gr, Pr)
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where the superscript N = 1 or 2 denotes a solution to Problem N. For Problem 1, the above would be

solutions to the boundary value problem defined by the left and center equations of Eqs. (17)-(20).

Solutions to Problem 2 would satisfy the right and center equations.

THE RELATIONSHIP BETWEEN PROBLEMS 1 AND 2 AND THEIR SOLUTIONS

Assume a solution is available for one of the two problems, say Problem 1 ,
for specified values n, Gr, Pr,

and for arbitrary £ > 0. Now assume this solution can be extended analytically to e < 0. Although such

a negative-e solution may be available, note that there is no a priori reason to suspect that it is physically

meaningful. From Eqs. (17)-(20) it can now be seen that for a particular e = e
1
< 0 the available ‘non-

physical' solution is also a solution to 'physical' Problem 2, for e = - e
1
> 0. Thus, if e < 0 in the

presumed known solution to one of the problems is replaced by - £ = |e|, then the boundary value

problem satisfied by this available solution becomes identical to that of the other problem for e = |e| >
0. In other words, the available solution to the one 'non-physical* problem is a useful, physically-

meaningful solution to the other. In particular

U* (1)
(X*; n, +/- e, Gr, Pr) = U‘ (2)

(X*; n, -/+ e, Gr, Pr);

p‘ (1)
(x;

: n, +/- e, Gr, Pr) = p*' (2,
(x;

: n, -/+ e, Gr, Pr);

T* (1)
(X-; n, +/- £, Gr, Pr) = T

*'
(2)

(X*; n, -/+ £, Gr, Pr)

(23)

In general one would hope that the above ideas can be used as an aid in unifying solutions to Problems

1 and 2. For example, the problem formulation and the form of the U

*

(N)

,

p* ' N)
,
and T*

(N)
can be used

as a theoretical basis for correlating experimentally determined values of these solution variables and of

properties of important quantities derived from these variables.

Examples of the latter referenced derived quantities are vent flow rates and vent flow coefficients, when
the flow is uni-directional, and vent exchange flow rates, when the flows are bi-directional. For example,

define as the volume flow rate, under uni-directional flow conditions, from the high pressure side

of the vent to the low pressure side of the vent,

(24)

In the above, the integral is over the area of the vent, Av, and U
3

(N)
is the average value of U

3

(N)
at X

3

(N)

= 0. Then, defining the Froude number

F
(N| = (V

lffiH/Av)/(2gD£)’'
2

(25)

it can be shown from the first of Eqs. (22) and (23) that
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(CkA,)/(2gDe)
1/2 = F

|N)
(n, £, Gr, Pr)

F (1)
(n, +/- £, Gr, Pr) = F (2)

(n, -/+ e, Gr, Pr)

(26)

SUMMARY AND APPUCATION

Flow through a horizontal vent was considered where the vent-connected spaces near the elevation of

the vent are filled with fluids of different density in an unstable configuration, with the density of the top

space larger than that of the bottom space. With zero-to-moderate cross-vent pressure difference the

instability leads to a bi-directional exchange flow between the two spaces. For relatively large cross-vent

pressure difference the flow through the vent is unidirectional, from the high- to the low-pressure space.

In its full generality, the problem and its solution has a broad range of importance and applicability. Of

interest here are the aspects of the problem of predicting the flow, in the presence of arbitrary cross-vent

pressure difference, between relatively cool and dense air in the top space and relatively high-temperature

and buoyant air in the bottom space. This is a general problem associated with ventilation of enclosed,

heated/cooled spaces. It is a problem whose general solution is required if one is to be able to predict

the spread of smoke (i.e., fire-heated and -contaminated air) and the flow of fresh air (i.e., oxygen, which

could sustain a fire, lack of which could extinguish a fire) during fires in multi-room facilities. Reference

here is to smoke spread between contiguous rooms, or between a smokey room and the outside

environment, separated by a horizontal partition (i.e., ceiling/floor) with penetrations (i.e., vents), where

room-to-room or room-to-outside, cross-vent, pressure differences of arbitrary magnitude and direction

can be generated by forced-ventilation HVAC systems, buoyancy forces (i.e., stack effect), and/or wind

effects. The problem has application in fire scenarios involving top-vented atria, stairwells, shipholds, etc.

For arbitrary specified cross-vent pressure difference, boundary value problems for the flow were

formulated for cases where the fluid media in the two spaces are the same perfect gas, with relatively high

and low temperature (corresponding to low and high density) in the lower and upper spaces, respectively.

Two separate classes of problem were distinguished. In Problem 1 , the higher pressure is in the space

above the vent. This enhances the downward component of the flow from the top to the bottom space,

and diminishes, or reduces to zero, the upward flow. In Problem 2, the higher pressure is in the lower

space leading to enhancement of the upward flow, etc. Relationships between the two boundary value

problems and their solutions were identified. These relationships would be useful for extending an

available solution for one class of problem to that of the other and for unified understanding and

correlation of experimental data for the two flow configurations.

The theoretical results developed here are the basis of the analysis of Reference [10] which uses a variety

of previously published experimental data to develop a unified solution to Problems 1 and 2 for flow

through a shallow circular vent.
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NOMENCLATURE

Av vent area

cN coefficients in a Taylor expansion, Eq. (1 6)

C
p

specific heat at constant pressure

C* dimensionless C
p

,
Eq. (12)

D characteristic length of vent

f[
1)

,
f[
2) body force acceleration vector for Configurations 1 and 2, Eq. (6)

F*
(1)

,
F* (2) dimensionless fj

1
*, f[

2)
,
Eq. (11)

F* generalized F*
(1)

, F*
(2)

,
Eq. (18)

F
(N)

Froude number for Problem N, Eq. (25)

G(a) Eq. (15)

Gr Grashoff number, Eq. (21)
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g

kn

K*

k

M*

mN

P

Phigh’ Plow

P

P'

P*

P

p
*'(N)

Pr

R

T

"'"top’ "*"bot

T

T'

T*

r
J*'(N)

U
i

U*

U3
(N)

u*
(N)

acceleration of gravity

coefficients in a Taylor expansion, Eq. (1 6)

dimensionless k, Eq. (12)

thermal conductivity

dimensionless n, Eq. (12)

coefficients in a Taylor expansion, Eq. (1 6)

pressure

far-field pressure on high-, low-pressure side of vent, near the vent elevation

(Phigh + PlowV^

perturbation pressure, Eq. (11)

dimensionless p, Eq. (11)

dimensionless p , Eq. (11)

p* for Problem N

Prandtl number, Eq. (21)

gas constant

absolute temperature

far-field T in top, bottom space

Otop +
"*"bot)/2

perturbation T, Eq. (11)

dimensionless T, Eq. (11)

dimensionless T

T* for Problem N

velocity

dimensionless U jt Eq. (11)

average U3
at vent elevation for Problem N, Eq. (24)

U • for Problem N
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v< N >

*H I GH

W(x; a)

Xi

x;

Ap

AT

Ap

e

PjOP' P BOT

P

P
'

*

P

P

A

M

n

volumetric flow rate from high- to low-pressure side of vent for Problem N, Eq. (24)

Eq. (15)

cartesian coordinates, Fig. 1

dimensionless Xp Eq. (11)

Phigh * Plow

"*"bot
' Ptop

Piop ' P BOT

dimensionless Ap, AT Eq. (13)

far-field p in top, bottom space

(Ptop Pbot)/^

perturbation p, Eq. (11)

dimensionless p, Eq. (11)

dimensionless p'
,
Eq. (14)

Eq. (6)

dynamic viscosity

dimensionless Ap, Eq. (20)
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Problem 1 Problem 2

Table 1

.

Conservation of Mass

afpiryaXj = o

Conservation of Momentum

pUjau/aXj - pfj
1
* = a pUjau/aXj - P\f> = a

^ = (0, 0, - g) f;
2) = (0, 0, g)

a = - ap/ax, + a[Ai(au/aXj + au/ax^/aXj - ^a^su/ax^/ax.

Conservation of Energy

pCpUjaT/aXj = a(kaT/axp/aXj

Equation of State

P = pRT

Boundary Conditions:

X
? > 0, r -» oo :

U : - 0

P “*
Phigh ' Ptop9X3

P Piop

P “* Phigh + Pbot9^3

P ^BOT

X
? < 0, r -» oo :

U.-0

P Plow * ^bot9X3

P ^BOT

X
3
= 0

+
or O'; outside the vent opening

U, = aT/ax3 = 0

P Plow ' Ptop9X3

P Pio?

(5)

(6)

(7)

(8)

(9)

Dimensional Boundary Value Problems 1 and 2, corresponding to Configurations 1

and 2 of Figure 1

.
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Problem 1 Problem 2

Conservation of Mass

3(p*U*)/3X* = 0

p = WCT*'; e) p* = W(T* ;
- e)

Conservation of Momentum

p*U*3U*/3X* =

p‘F* - 3p */3X* + (1/Gr
1 /2){3[M‘(3U;/3X* + 3U*/3X*)]/3X* - (2/3)3 (/W*3U‘/3X‘)/3X‘}

F‘ = (0, 0, - 1/2)

p' = [W(T*
; £) - 1 ]/£;

p' = - [W(T*
;

- £) - 1 ]/£;

M* = M\- £T*') M* = M*(£T‘
)

Conservation of Energy

p*U*3T*/3X* = [1/(PrGr
1 /2)](1/C^3(K‘3T*'/3X‘)/3X‘

C; = C'
p
(- £T* ); K* = K*(- £T") C; = C^T*'); K* = K*(£T")

Boundary Conditions:

X3 >0, r
* -> 00 :

U* -* 0;
p*' n - X^/4; T*' 1/2;

n = Ap/(4gApD)

X‘ < 0 , r
* -* 00 :

Uj—>0; p —

*

- n + X3/4 ; T -* - 1/2

X3 = 0
+
or 0~; outside the vent opening :

U* = 3T"/3X* = 0

(17)

(18)

(19)

(
20

)

Table 2. Dimensionless Boundary Value Problems 1 and 2, corresponding to Configurations

1 and 2 of Figure 1.
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Figure 1.

Jllp = P > P 1
^1||?HIGH TOP BOT |

> Plip
JpTOP BOT|

It T ss$S:

J-TTOP BOT

p = p < p
LOW BOT TOP

P ,
T HH

i: BOT BOT ijiliigs:
BOTTOM:

(a)

p =p >P
HIGH BOT TOP

Ip ,
t

BOT BOT
I
X.

BOTTOM

(b)

(a) Configuration 1 and (b) Configuration 2 illustrating conditions associated with

Boundary Value Problems 1 and 2, respectively.
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